COURSE OUTLINE
CIVL 437, Ship Structures I, 3 credits, Term 1, 2013-14

Schedule
• 13 consecutive weeks, starting September 4
• Wednesdays, 4-7pm

Instructors
• Dr. Iain Braidwood, Director, Teekay Engineering and Consulting
 Email: Iain.Braidwood@teekay.com
 Office: Off-campus
• Dr. Reza Vaziri, Professor and Head, Department of Civil Engineering, UBC
 Email: Reza.Vaziri@ubc.ca
 Office: CEME 2002F
• Dr. Terje Haukaas, Professor, Department of Civil Engineering, UBC
 Email: terje@civil.ubc.ca
 Office: CEME 2011

Teaching Assistant
• TBD

Calendar Description
Structural theory and practice of ship structural design; longitudinal and transverse strength of hull girder; plates and shells; matrix analysis; introduction to classification society rules; ship section design synthesis; finite element analysis. Three weekly lecture hours. No lab or tutorial hours. Prerequisites: One of MECH 360, CIVL 332, or permission of the instructor

Learning Objectives
Upon completion of the course, it is expected that students will be able to:
• Describe the structural components of a ship and the structural properties of those components
• Apply basic hull girder analysis for the design of a ship structure, including calculations of vertical global hull girder bending loads, section modulus, and bending stresses
• Apply basic concepts of shear stresses in ship primary and tertiary structures, including shear flow and shear lag effects.
• Apply basic concepts for the bending of beams, plates, and stiffened panels as applied to a ship structure.
• Apply basic concepts for the buckling of columns, plates, and stiffened panels as applied to a ship structure.
• Calculate loads on the structural components of a ship, taking account of hydrostatic loads and specified loads from ice, wind, waves and mooring lines
• Assess potential failure modes of the structural components of a ship, and be able to predict the onset of such failures

Textbooks
The following books will be extensively used in this course and are available as “eBooks” in the UBC library:

[HP] Hughes & Paik (2010) “Ship Structural Analysis and Design” Published by the Society of Naval Architects and Marine Engineers

The following books are also relevant for this course, and some of them are available either as an eBook or as a regular book in the UBC library:

[B] Bai (2003) “Marine Structural Design” Published by Elsevier

[S] Shama (2010) “Torsion and Shear Stresses in Ships” Published by Springer

Topics
• Introduction to Ship Structures (Braidwood)
 o Terminology
 o Structural design process
 o Common problems in ship design
 o Typical failures
Fatigue in practice

Elastic Analysis of Primary Hull Structure (Haukaas)
- Structural analysis methods
- Beam theory
- Shear lag
- Section modulus calculations
- Hull-superstructure interaction
- Buoyancy and weight distribution curves
- Stresses from beam bending
- Stresses from St. Venant torsion
- Stresses from warping torsion
- Fatigue theories
- Beams on elastic foundation

Analysis of Secondary and Tertiary Structures, Buckling and Plasticity (Vaziri)
- Analysis of plates
- Analysis of stiffened panels
- Buckling
- Elasto-plastic analysis
- Impact

Assignment Strategies
Student performance will be assessed through several components as follows:
- Assignments/Quizzes: Each instructor will issue homework assignments and/or in-class quizzes during the term to allow application of the subject matter
- Final Exam: A 3-hour final exam will cover the entire course curriculum, with emphasis on what is covered in assignments/quizzes

Grading System
- Assignments & quizzes: 40%
- Final Exam: 60%